
Sustainable Projects Engineering

Waste Water re-Purification

Arturo Constante

Zero Emission Technologies

Paradigm Shift

HUMAN WASTEWATER

PRODUCION HAS

EXCEED THE EARTH'S

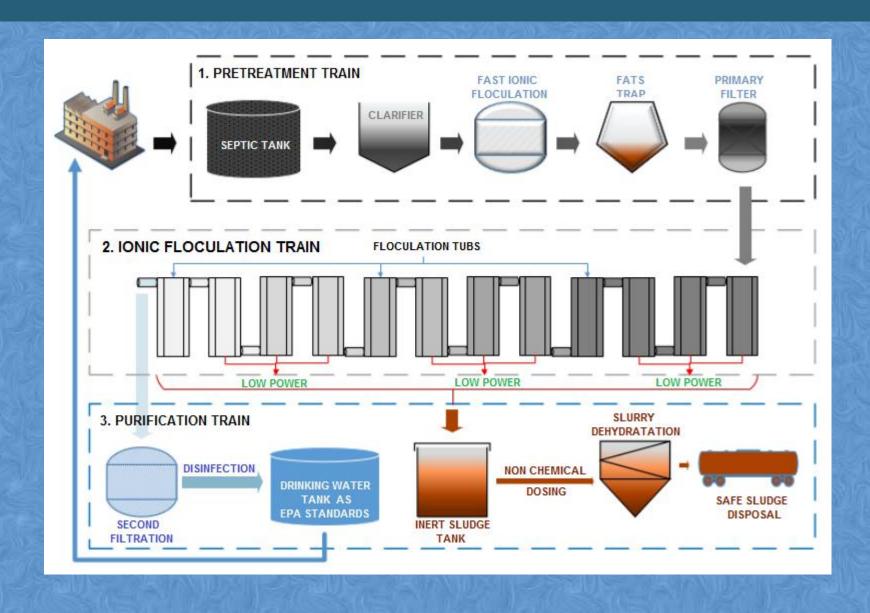
NATURAL CAPABILITY

TO RESTORE

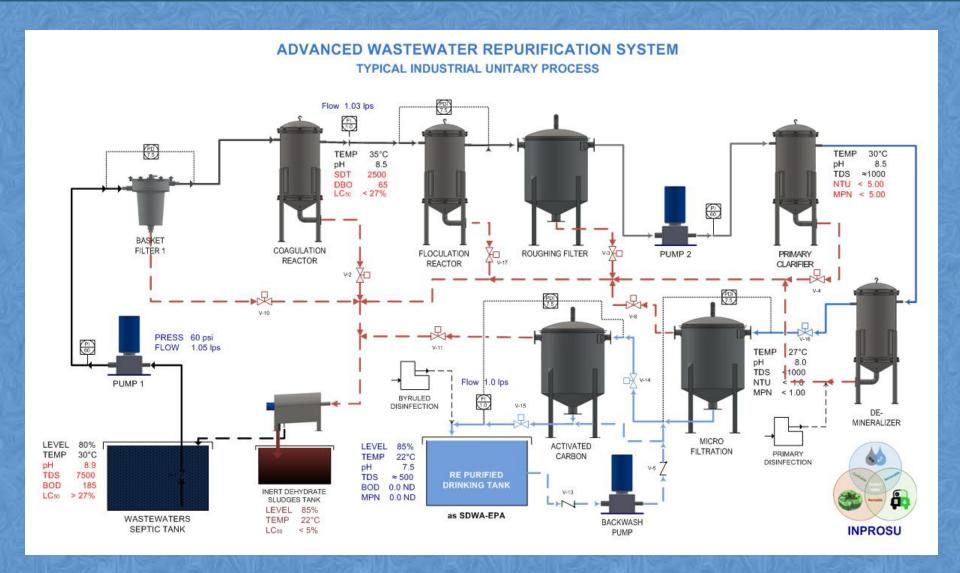
DRINKING WATER

Technological Principle

By an Electro-Ionic process without any chemical dossing, the contaminating molecules are disociated into their basic compunds and allowing their easy removal throughout precipitation and filtration.


Re Purification WW 100 m3/d to Drinking Water Influent - Mall; Power consumumption 4.25 kW-hr Located in Mexico City

Typical Wastewater Purification Process


WW Treatment 75 m3/d to sewer disposal Influent - TV studio; Power consumumption 3.25 kW-hr Located in Mexico City

Industrial Wastewater Purification

Executed Projects by 2014

Total Flow	77.1 lps	E	XECUT	ED WAS	TEWATE	RS RE-PU	RIFICAT	ION PRO	JECTS U	NTIL 201	4
No.	FLOW M3/D	WW QUALITY	INFLUENT DBO	WW SOURCE	EFLUENT QUALITY	RE USE	POWER kW/h/m3	PLANT AREA M2	CLIENT	HANDOVER DATE	LOCATION
1	48	Residual doméstica		Residential	NOM-003	Irrigation	2.80	26	Church	Dec/2003	Mexico State
2	6	Residual Biotóxica		Antirrabic	NOM-127	Human Use	3.50	10	Municipality Institution	Aug/2004	Mexico City
3	100	Residual Comercial		Mall	NOM-127	Drinking Water	4.25	36	Retail Chain	Mar/2006	Mexico City
4	120	Residual Biotóxica		Farm	NOM-003	Irrigation	3.25	28	Farming Community	Feb/2008	Mexico City
5	120	Residual Municipal		Farm	NOM-003	Irrigation	3.25	28	Farming Community	Mar/2008	Mexico City
6	110	Residual Municipal		Municipality	NOM-003	Irrigation	3.75	225	Municipality Government	Oct/2009	Chiapas State
7	28	Residual doméstica		Offices	NOM-002	Sew er Disposal	0.85	15	Firm	Feb/2010	Mexico City
8	24	Residual Industrial		Mechanical Workshop	NOM-002	Sew er Disposal	0.45	32	Government	Jan/2011	Mexico City
9	24	Residual Industrial		Mechanical Workshop	NOM-002	Sew er Disposal	0.45	32	Government	Jan/2011	Mexico City
10	100	Residual Biotóxica		Municipality	Agua		2.00	40	Municipality Government	Dec/2010	Cancún City
11	24	Residual Municipal		Municipality	NOM-003	Irrigation	0.90	15	Construction Firm	Feb/2011	Queretaro State
12	5,184	Industrial Textil		Textile Industry	NOM-001	A quifer Disposal	0.40	390	Industrial Firm	Apr/2001	Sonora State
13	24	Residual Municipal		Oil&Gas	NOM-001	A quifer Disposal	1.00	15	Refinery Project	May/2011	Puebla State
14	380	Salmuera Marina		Seaw ater	NOM-001	Aquifer Disposal	missing	missing	Exportadora de Sal Gro	Jun/2012	Queretaro State
15	60	Residual Municipal		Municipality	NOM-002	Sew er Disposal	missing	missing	missing	2013	missing
16	312	Residual Industrial		Industry	NOM-003 y NOM-127	Irrigation & Human Use	missing	missing	Industrial Firm	2014	SLP State

WW Big Chanel Purification Results

RE-PURIFIED WATER OF BIG WASTEWATER CHANEL OF MEXICO CITY COMPARISON OF RESULTS VS OFFICIAL STANDARDS 041 AND 127							
ODOR	NOT ODOR	ODORLESS	ODORLESS				
COLOR (U PI-Co)	2.5	15	20				
FLAVOR	NOT TASTE	TASTELESS	TASTELESS				
TURBIDITY (NTU)	0.8	5	5				
RESIDUAL CHLORIDE (ppm)	0	0.1	0.2 – 1.5				
ALCALINITY (mg/l)	102.78	300					
CHLORIDES (mg/l)	88.04	250	250				
TOTAL HARDNESS (mg/l)	15.53	200	200				
NITRITE (mg/l)	0.121	0.05	1				
NITRATE (mg/l)	0.27	10	10				
SULFATE (mg/l)	46.28	250	400				
PHENOL (mg/l)	NOT DETECTED	0.001	0.3				
FLUOR (mg/l)	0.58	0.7	1.5				
рН	7.91	6.5 – 8.5	6.5 – 8.5				
CIANUROS (mg/l)	NOT DETECTED	0.05	0.07				
OZONO (mg/l)	NOT DETECTED	0.4	-				
FREE OXIGEN	NOT DETECTED	2	-				
CONLIFORMORGANIS	NOT DETECTED	0	ı—				

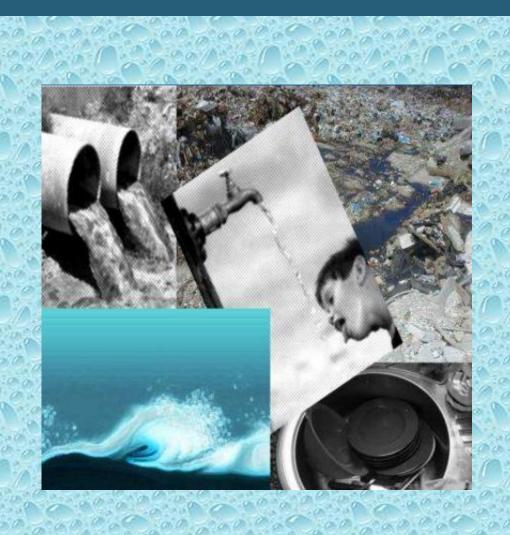
Drinking Water Certificate by accredite Lab

Advantages of WWRPS vs WWTP

Parameter	RE-PURIFICATION	Conventional WWTP
Wastewater Quality	Any WW, including Lixiviates, O&G, Radioactive	Constrained for high DBO and hozardous wastewaters
Effluent Quality	Drinking Water as EPA standard	Just to drain into sewer system
Energy Consumption	1 - 1.4 kW/m ³	10 - 12 kW/m ³
Chemical Dossing	NOT required	Chemical and Biologicals
Operating and Maintenance Costs	80% lower than WWTP	Too High
Sludges Quality & Treatment	Inert - just dewatering	Activated - chemical post- treatment
Required Area (m²/lps)	16 - 30	typically 100 m ²
Operating Life Time	more than 50 years	usually no more than 30 y
Investment BPE (years)	Highly profitable 3 to 5	very long term or never

SOME OF OUR CLIENTS

- PEMEX GOVERNMENT MEXICAN 0&G
- SEDENA MEXICAN ARMY
- MUNICIPALITY OF HUIXTLA, CHIAPAS
- MEXICAN EPISCOPATE
- ANTIRABIC OF MILPA ALTA
- FARMING CUMMUNITY OF TLALTENANGO
- ABENGOA MEXICO (EPC)
- UNILEVER MEXICO (FOODS AND CARE)
- TEXTILE INDUSTRY
- > OTHERS


Installed capacity by 2014: 77 lps

Type of Treated Wastewaters

- ✓ Municipal
- ✓ Industrial
- ✓ Sea Water
- ✓ Lixiviates
- √ Hexachlorines
- ✓ Lixivated Sludges

an sanda an an sanda

- **✓** Biotoxic
- ✓ Mining
- √ Radioactive
- ✓ O&G Slurry
- ✓ etc

- We develop Zero Emission Technologies
- We help our Clients to be Sustainables
- We are committed to help #SDG6 a reality

Arturo Constante
Sustainable Project Manager
+52 55 3155-9654
arturo.k01@gmail.com

"Because the Responsible Use and Reuse of Natural Resources"