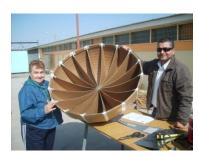


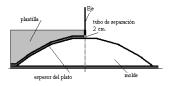
PORTAFOLIO DE PROYECTOS APLICADOS DE ENERGÍA SOLAR A TACAMA COCINAS SOLARES AUTOCONSTRUCCIÓN

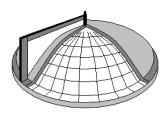
LOS CONCENTRADORES PARABÓLICOS REFLECTANTES SE UTILIZAN PARA CONCENTRAR LA LUZ SOLAR EN UN PUNTO (FOCO) Y LOGRAR ALTAS TEMPERATURAS (+400°) CON LA FINALIDAD DE REALIZAR ACCIONES DE CALENTAMIENTO Y COCCIÓN DE ALIMENTOS.

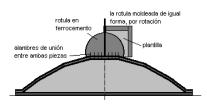


COCINA SOLAR PARABÓLICA DISEÑADA CON FINES EDUCATIVOS Y DE TRANSFERENCIA TECNOLÓGICA, SUS PRINCIPALES CARACTERÍSTICAS SON SU CONSTRUCCIÓN DE BAJO COSTO, Y SU PROCESO DE CONFECCIÓN FUNDAMENTADO EN CRITERIOS EDUCATIVOS Y PROMOCIONALES.



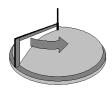






COCINAS SOLAR PARABÓLICA


COCINA SOLAR PARABOLICA
DISEÑADA PARA PROCESOS DE
AUTOCONSTRUCCIÓN DE BAJO
COSTO Y MANO DE OBRA DE BAJA
ESPECIALIZACIÓN CON EL FIN DE
DESARROLLAR TALLERES DE
AUTOGESTIÓN Y
EMPRENDIMIENTO



HORNOS SOLARES

CONSTRUCCIÓN DE HORNO SOLAR DIFERENTES MODELOS Y FUNCIONES

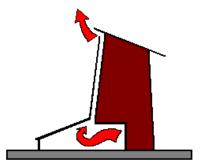
DISEÑO Y CONSTRUCCIÓN DE HORNOS SOLARES TIPO TRAMPA DE CALOR PARA COCCIÓN DE ALIMENTOS, ESTAS FUNCIONAN COMO CÁMARAS TERMICAS QUE CAPTURAN Y CONSERVAN EL CALOR DEL SOL PUDIENDO LLEGAR A TEMPERATURAS SUPERIORES A 150°C

COLECTOR SOLAR PARA AGUA CALIENTE SANITARIA

COLECTORES SOLARES DE CONSTRUCCIÓN BÁSICA PARA CAPACITACIÓN Y TRANSFERENCIA TECNOLOGICA EN COMUNIDADES DE ALTO RIESGO Y ZONAS RURALES

SISTEMA SANITARIO SECO DE EMERGENCIA

PROYECTO DE IMPLEMENTACIÓN DE LETRINAS SANITARIAS SECAS DE EMERGENCIA POS-TERREMOTO, PROYECTO FINANCIADO POR EL GOBIERNO SUIZO – 400 UNIDADES INSTALADAS, ESTAS POSEÍAN INODORO SECO, LAVAMANOS, URINARIO, ESTANQUE PARA 100LITROS DE AGUA.

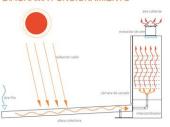


SISTEMA SANITARIO SOLAR SECO

CONSTRUCCIÓN DE SISTEMA SANITARIO SOLAR SECO DISEÑADO PARA REMPLAZAR EL USO DE POZOS NEGROS EN ZONAS RURALES

DESHIDRATADORES SOLARES

CONSTRUCCIÓN DE DESHIDRATADORES SOLARES DE PRODUCTOS AGRICOLAS PARA ABASTECIMIENTO FAMILIAR Y PRODUCTIVO

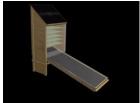

Secador de fruta de sistema indirecto, con cámara de secado con cooler reutilizado y placa colectora como fuente de energía calórica.

Producto pensado para uso domiciliario o pyme, de baja capacidad y alto rendimiento.


ESPECIFICACIONES TÉCNICAS

Capacidad secado:	2.3 m2
Placa plana carcasa exterior:	ZincAlum
Aislación placa:	Poliuretano expandido.
Placa captadora :	Zinc galvanizado arrodonado
Cubierta absorvedora:	Policarbonato 0,4 mm.
Dimensiones placa colectora:	300 x 78 x 8 cm
Cámara de secado:	Cooler reutilizado 1 cuerpo.
Cantidad de bandejas de secado:	8 unidades.
Dimensión de bandejas de secado:	51 x 53 cm.
Capacidad extractor de aire:	95 m3.
Dimensiones cámara de secado:	61 x 61 x 195 cm

DIAGRAMA FUNCIONAMIENTO



Av. Maturana 961-C Villa Alemana

Tel: (032) 3272933

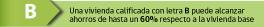
www.solaria.cl

INSTALACION DE COLECTORES SOLARES TÉRMICOS PARA AGUA CALIENTE SANITARIAS

DESARROLLO DE PROYECTOS DE AGUA CALIENTE SANITARIA PARA VIVIENDAS E INSTITUCIONES

SISTEMAS SOLARES FOTOVOLTAICOS

DISEÑO DE MODULOS DE APOYO ELÉCTRICO CON GENERACIÓN SOLAR



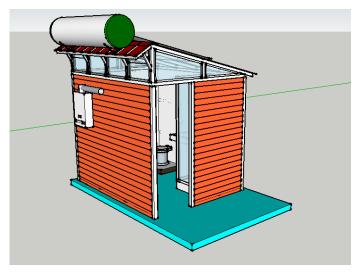
CALIFICACIÓN ENERGÉTICA DE VIVIENDAS CEV

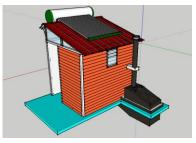
EVALUADOR ENERGÉTICO DE VIVIENDAS MINVU, EFICIENCIA ENERGÉTICA Y DESARROLLO SUSTENTABLE

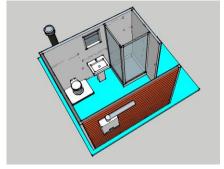
Una vivienda calificada con letra **C** puede alcanzar ahorros de hasta un **50%** respecto a la vivienda base

Una vivienda calificada con letra **D** puede alcanzar ahorros de hasta un **50%** respecto a la vivienda base

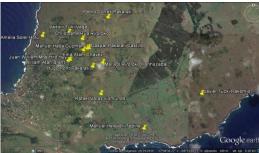
Vivienda Base, consumo: 19.200 kWh/año. Exigencia actual establecida en la Ordenanza General de Urbanismo y Construcciones (OGUC), en la que ha partir del año 2007 deben cumplir todas las viviendas que se construyen en nuestro pais.



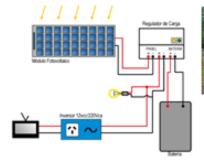



ACREDITACIÓN SANITARIA DE SISTEMA SANITARIO SOLAR SECO

DISEÑO Y DESARROLLO DE UNIDAD SANTIARIA SOLAR SECA PARA VIVIENDAS SIN FACTIBILIDAD DE ALCANTARILLADO, PARA VIVIENDAS SOCIALES —COMISIÓN DE DESARROLLO SUSTENTABLE SERVIU VALPARAISO



DESARROLLO SUSTENTABLE EN ZONAS INSULARES


PROMOCIÓN Y DESARROLLO DE PROYECTOS DE EFICIENCIA ENERGÉTICA Y DESARROLLO SUSTENTABLE EN ISLA DE PASCUA –SERVIU VALPARAÍSO

FACILITADOR PROGRAMA CECREA CONSEJO DE LA CULTURA

TRABAJO DE FACILITADOR DEL PROGRAMA EDUCATIVO CECREA PARA NIÑOS, NIÑAS Y JOVENES IMPLEMENTADO POR EL CONSEJO DE LA CULTURA EN LA COMUNA DE PICHIDEGUA

PROYECTO MERCADO URBANO ECOLOGICO DISEÑO Y PROMOCIÓN DE MOBILIDAD ELÉCTRICA SOLAR

UNIDAD MOVIL ELÉCTRICA 100% SUSTENTABLE CON FUNCIONAMIENTO ENTERAMENTE CON ENERGÍA SOLAR FOTOVOLTAICA

RESPALDO AUDIOVISUAL DE ALGUNOS TRABAJOS REALIZADOS

https://www.youtube.com/watch?v=SV3JuRla4Js

https://www.youtube.com/watch?v=wMud9IKbVrc

https://www.youtube.com/watch?v=F fZEBw8r-c

https://www.youtube.com/watch?v=9wO19uBzLL4

https://www.youtube.com/watch?v=11311-FjC-o

11121212

VID-20160913-WA0004.mp4

Unidad Sanitaria SUSTENTA-HOGAR Serviu Valparaiso.mp4

LUIS H. SEGUEL RAMIREZ-DISEÑADOR INDUSTRIAL CONSULTOR EN EFICIENCIA ENERGÉTICA AGUA Y ENERGÍA , TECNOLOGÍAS APROPIADAS, ENERGÍA SOLAR Y DESARROLLO SUSTENTABLE

EMAIL: <u>sequelconsultor@gmail.com</u>

Móvil: +56982300097,

Ciudad: Villa Alemana, Región de Valparaíso

