
Hardware

O TBEE é um dispositivo que atende à comunicação sem fio na frequência de 2.4 GHz, podendo estabelecer a comunicação em diferentes topologias de rede, dentre elas estrela, árvore e malha.

"Este equipamento opera em caráter secundário, isto é, não tem direito à proteção contra interferência prejudicial, mesmo de estações do mesmo tipo, e não pode causar interferência a sistemas operando em caráter primário."

Especificação Técnica

Unidade de RF		
	Frequência	2400 - 2485 Mhz
	Modulação	O-QPSK
	Potência Saída	18 dBm
	Sensibilidade	-98,5 dBm
	Taxa máxima	250 kbps
	Corrente de pico	130 mA
	Corrente nominal	32 mA
	Distância máxima (com visada)	1000 m
	Temperatura de operação	-40 a 85 ºC
	Antena	Conector u.FL
	Impedância	50 ohms
μControlador		
	Família	CC2530 (núcleo Intel 8051)
	Memória RAM	8 KB
	Memória FLASH	256 KB
UART		
	Quantidade	UART1 UART2
	Baud rate	110 - 115200 bps

ível de Sinal anais de DMA	TTL CMOS 3.3 V
anais de DMA	
	1 - UART1
uantidade	1 - Compartilhado com UART2
requência máxima	4 Mhz
uantidade	10
ível de Sinal	TTL CMOS 3.3 V
ange	3.3 a 5.5 V DC
orrente máxima	130 mA
7 x 30 x 4 mm (A x L x P)	
	requência máxima uantidade ível de Sinal ange orrente máxima

Descrição dos terminais

GND	Referência
+5.5 V	Alimentação através do regulador LDO. Range de 3.3 a 5.5 V DC
RX	RX - UART1
TX	TX - UART1
RESET	Reset do μC. Ativo em nível lógico baixo.
P2.2	Terminal de gravação (DC - debug clock)
P2.1	Terminal de gravação (DD - debug data)
3.3V	Alimentação direta ao μC
P0.0	I/O
P0.1	I/O
P0.4	Desacoplamento da UART1. Nível lógico alto desabilita RX UART1
P0.5	I/O
P0.6	I/O, SPI_CSS
P1.2	I/O
P1.3	I/O
P1.5	I/O, SPI_CLK
P1.6	I/O, TX - UART2, SPI_MOSI
P1.7	I/O, RX - UART2, SPI_MISO
P2.0	I/O

Descrição do funcionamento

O TBEE é gravado com um *firmware* padrão que permite a formação de uma rede *ZigBee* em malha, também denominada *mesh*. Para tal são disponibilizados dois *firmwares* distintos, ambos compatíveis com o dispositivo: o coordenador e o roteador.

O coordenador possui a tarefa de controlar e gerenciar a rede, rotear quadros, permitir a associação de novos dispositivos, endereçar os dispositivos e, em muitas aplicações, é o elemento da rede para o qual se concentra todo o fluxo de dados. Com a exceção da formação e controle da rede, o roteador possui as mesmas funcionalidades do coordenador.

Diante disto, para a formação da rede é obrigatória presença do dispositivo coordenador, que estando ligado na mesma área de cobertura de um ou mais roteadores, estabelece os enlaces de comunicação.

De forma a permitir a identificação visual do status do dispositivo, o TBEE conta com um diodo emissor de luz (LED), o qual apresenta comportamentos específicos que auxiliam na depuração do funcionamento.

No roteador:

- 1. Alternando entre *on/off* a cada meio segundo: o roteador não está associado a nenhuma rede:
- 2. Piscando a cada 4 segundos: o roteador se associou a uma rede.

No coordenador:

- Alternando entre on/off a cada meio segundo: atingiu a máxima capacidade de roteadores armazenados em sua tabela de associação. Nesse caso o dispositivo deve ser reiniciado para voltar a permitir novas associações;
- Piscando a cada 4 segundos: está energizado e permitindo associações de novos roteadores à sua rede;

Em ambos os dispositivos:

1. Três piscadas rápidas: cada vez que o dispositivo é iniciado.

Uma vez que a rede é estabelecida entre o coordenador e o(s) roteador (es), os dispositivos estão aptos a trocar quadros de dados por meio de suas portas seriais assíncronas de comunicação. O código por padrão possui as seguintes características:

- taxa da serial em 9600 bps e configuração em 8N1 (8 bits de dados, sem paridade, 1 start bit, 1 stop bit, stop bit em nível alto);
- canal 26 do protocolo ZigBee, dentre os 16 possíveis (canal 11 ao 26);
- máxima potência de transmissão dos rádios;
- máximo de 10 saltos do quadro ao longo da rede.

Embora os referidos valores tenham sido adotados, podem ser configurados para outros valores via comandos AT.

Em uma rede estabelecida, se um desses comandos for enviado pela serial é propagado para os demais dispositivos para que as alterações sejam efetivadas em todos os componentes da rede.

Comandos AT aceitos

Os comandos que realizam a configuração dos módulos podem ser:

AT+CHN=<canal de operação>\r\n
 Grava determinado canal de operação, podendo ele variar entre 11 e 26 (dois bytes em ascii).

Exemplo:

```
18/10/2016 14:17:49.450 [TX] - AT+CHN=12<CR><LF>
18/10/2016 14:17:49.699 [RX] - ATOK<CR><LF>
```

AT+CHN?\r\n

Lê o canal de operação armazenado na memória do dispositivo.

Exemplo:

```
18/10/2016 14:18:15.534 [TX] - AT+CHN?<CR><LF>
18/10/2016 14:18:15.755 [RX] - AT+CHN=12<CR><LF>
```

AT+BRT=<taxa>\r\n

Altera a taxa de operação da serial. Os valores possíveis para a taxa são dados em ascii: 2400, 4800, 9600, 14400, 19200, 28800, 38400, 56000, 57600 e 115200.

Exemplo:

```
18/10/2016 14:20:23.069 [TX] - AT+BRT=2400<CR><LF>
18/10/2016 14:20:23.325 [RX] - ATOK<CR><LF>
```

AT+BRT?\r\n

Lê a taxa da serial armazenada na memória do dispositivo.

Exemplo:

```
18/10/2016 14:21:01.138 [TX] - AT+BRT?<CR><LF>
18/10/2016 14:21:01.396 [RX] - AT+BRT=2400<CR><LF>
```

AT+RAD=<saltos>\r\n

Altera a quantidade máxima de saltos do quadro ao longo da rede. A quantidade de saltos pode ser ajustada para valores inteiros entre 1 e 254 (em ascii).

Exemplo:

```
18/10/2016 14:18:55.364 [TX] - AT+RAD=100<CR><LF>
18/10/2016 14:18:55.609 [RX] - ATOK<CR><LF>
```

AT+RAD?\r\n

Lê a quantidade máxima de saltos armazenada na memória do dispositivo.

Exemplo:

```
18/10/2016 14:18:59.580 [TX] - AT+RAD?<CR><LF>
18/10/2016 14:18:59.809 [RX] - AT+RAD=100<CR><LF>
```

AT+TXP=<potência>\r\n

Altera a potência de operação do rádio. Os valores da potência devem ser inseridos em ascii e conforme a tabela do registrador TXPOWER (vide *datasheet* do CC2530.pdf), com exceção dos dois últimos valores da tabela.

Exemplo:

```
18/10/2016 14:15:49.770 [TX] - AT+TXP=197<CR><LF>
18/10/2016 14:15:50.027 [RX] - ATOK<CR><LF>
```

AT+TXP?\r\n

Lê a potência de operação do rádio armazenada na memória do dispositivo.

Exemplo:

```
18/10/2016 14:16:53.002 [TX] - AT+TXP?<CR><LF>
18/10/2016 14:16:53.222 [RX] - AT+TXP=197<CR><LF>
```

AT+RST\r\n

Reinicia os dispositivos que fazem parte da rede.

Exemplo:

```
18/10/2016 14:23:14.299 [TX] - AT+RST<CR><LF>
18/10/2016 14:23:14.551 [RX] - ATOK<CR><LF>
```

AT+CLN\r\n

Retorna os parâmetros armazenados na memória do dispositivo para os valores padrão.

Exemplo:

```
18/10/2016 14:24:10.556 [TX] - AT+CLN<CR><LF>
18/10/2016 14:24:10.826 [RX] - ATOK<CR><LF>
```

Observações:

- Sempre que um comando é corretamente recebido pelo TBEE pela serial, há o envio da mensagem ATOK\r\n como confirmação.
- O terminador \r\n (em ascii) corresponde a 0x0D 0x0A (em hexadecimal).

Transporte dos quadros

A transmissão de dados pela rede pode ocorrer de duas formas: endereçada a um dispositivo específico ou por *broadcast*. O que diferencia as duas formas é o endereço 16 *bits* que deve preceder cada quadro enviado.

Endereço específico

Cada TBEE possui um identificador único de 16 *bits* em sua etiqueta. Este endereço deve ser usado como endereço de destino no envio de quadros para um dispositivo específico e deve preceder o referido quadro.

Nesta situação somente o endereço de destino repassará o quadro pela serial.

Exemplo:

```
18/10/2016 14:32:05.218 [TX] - «Ímesh transparente
```

Sendo '«Í' correspondente ao endereço específico do endereço de destino (0xAB 0xCD em hexadecimal).

Broadcast

Quando for de interesse que todos os nós da rede repassem os quadros em transporte pela serial, no campo de endereço de destino deve-se preencher com 0xFFFF, indicando o envio por *broadcast*.

Exemplo:

```
18/10/2016 14:28:07.247 [TX] - ÿÿmesh transparente
```

Sendo 'ÿÿ' correspondente ao endereço broadcast (0xFF 0xFF em hexadecimal).

