
Flutter Technical
Playbook

Our Flutter journey: best practices,
processes and tools

Love at first s ight

As a Software Development Company, we focus on
choosing the right technology for every project. Our
mission is to achieve first-class products with modern
and high-quality technology.

We have worked with several technologies before we
fell in love with Flutter, but since we met it has
definitely changed the way we develop apps. It was
a before-and-after moment in our developers' lives.

Flutter is our solution for productive, high-quality, and
modern app development. It saves us the trouble of
having multiple codes for different platforms and
different working teams. This means Flutter
improves efficiency while reducing costs and still
achieving outstanding apps with native
performance.

Development CI/CD Inf rastucture

Flutter Fastlane Amazon

Web Services

Serverless
Github actions Google Cloud

Codemagic

Testflight

Jenkins

Firebase App 
Distribution

Firebase

Node.js

MongoDB

Docker

Algolia

SQLite

Hive

What is Flutter? Why choose Flutter?

A l i tt le bit about Flutter :

Flutter’s performance is indistinguishable from a native app.

Contrary to most cross-platform frameworks, Flutter not only
has a native look but it provides a native performance.

The UI process is more flexible and versatile since it provides the

possibility of customizing anything you see on screen. With
Flutter it’s simple and adjustable regardless of the complexity of
the components.

Flutter is a software development kit created by Google for building
beautiful, natively compiled, and high-performance applications for
mobile, web, and desktop from a single codebase.

The Google technology offers several benefits of the
development of software products, some of them are:

Fast programming and time-to-market

Flutter has server tools that speed up processes and skip

time-consuming steps and allows faster code development such
as a hot reload feature, quick experimentation, and UI building.

Native and smooth performance

Less Testing

The Quality Assurance process is faster because developers
write automated tests only once since it’s the same codebase for
multiple platforms.

Cross-platform

A single codebase. One working team. Multiple Platforms. The
useof Flutter saves time, effort, and costs while still achieving

high-quality results.

Flutter offers a wide variety of ready-made widgets that solve the

most common problems when developing user interfaces. Flutter

supports accessible widgets and allows customization.

Better compatibility

Expressive and flexible UI

Main tools we use to guarantee qual ity
processes and resul ts

Communication Management Productivity Tracking and
documentation

Team working with Flutter since its production release on 2018

Team members: 15+ Flutter Developers

20+ projects on Flutter

App that reached higher in the ranking: Top News Apps #4 in App Store

5 stars rating in Flutter projects on Clutch and Fiverr

Participants of the Flutter Community with multiple Open Source
libraries published on Github and information in our blog

Flutter Testing: 100% Coverage in some projects

Partners with big companies and referents of Flutter

F lutter Team Highl ights

Some Flutter Integrations and tools we work with

Cloud Infrastructure/Service
 Amazon Web Service
 Google Cloud Platfor
 12+ Firebase Service
 Serverless Platform
 Authenticatio
 Google APIs

Database and Searc
 Algoli
 Redi
 SQLit
 Shared Preference
 Secure Storage

Custom App Feature
 Custom Animation
 Always-On Background Service
 Native Caller I
 Custom Canvas Drawin
 Native code using Kotlin, Java, Swift and Objective C

Hardwar
 Face ID and Touch I
 NF
 Bluetoot
 GP
 Camer
 QR Code

Messaging/Notification
 Push Notification
 Rabbit M
 Websockets

Payment
 In-app purchas
 Apple Pa
 Google Pa
 Stripe

Audio/Video/A
 Unity A
 Agora Real Time Voice and Vide
 Podcast

Analytic
 Appsflye
 Firebase Analytics

Tool
 VS Cod
 Android Studi
 Xcode

Communication & Stud

 Daily Scrum Meetings in English & English Day
on Thursdays to practic

 At least 1-2hr per week dedicated to training
and learning something ne

 Pair programming when neede

 Constant retrospectives to analyze and
understand which areas need improvemen

 Documentation of the code and project to
guide our work and maintain all the relevant
parts of the project

Qual ity is our primar y focus

Software Desig

 We focus on correctly creating scalable,
maintainable and testable architectur

 We design every software solution before
implementing the

 We do Unit testing, Integration testing, and
Smoke testing with Flutte

 We apply good practices around Clean Cod

 We use scalable software designs like for the
Main State Management used: BLoC and
Provide

 Reactive Programming for live and efficient
updates on the U

 Error management and error loggin

 We have a set of pre built Flutter modules
for using to speed up the development

Proces

 We use SCRUM methodology to manage and
measure scalable team

 We constantly review and improve processes
from Flutter consulting to deploy and enhance
app

 Pull request, Linter, Refacto

 Branching model depending on the project
GitFlow with GitLab flow or GitHub flow

 CI/CD: Testing, Fastlane, Github actions,
Codemagic, Firebase App Distribution, Test
fligh

 Code review: every code written by a
Developer is reviewed by at least 2 other Devs

 We use services to measure performance,
analytics, bugs, UX experience, and much
more

Flutter for the Web

As soon as Flutter web was officially released on stable with
Flutter 2, we started immersing ourselves in this new possibility
and creating web projects with this technology.

We are able to reuse over 95% of the code used for each project
into the web platform. As a result, we practically have the web of
the project without additional cost.

When to use it

 Progressive Web Application
 Single Page Application
 Existing mobile applications

How to use it?

(Web renderers types

 HTM
 Canvas Kit

Layou

 Responsiv
 Adaptive

Serverless Infrastructur

 Firebase hostin
 Google Cloud Hostin
 GitHub pages

The UI layer is what
users see. The layout

that will be display based
on each different state

that bloc produces.

Presentation Logic and state Data Data provider

The bloc layer is in
charge of handlin the

logic and state
managment.

The repository is a layer
that abstract external

services of the
application. In this case

could be an api.

The network package is
in charge of dealing

with all comunication
with the api. Provides
the necessary data the

app will use.

UI BloC Repository Network

The UI layer is what
users see. The layout

that will be display based
on each different state

that bloc produces.

Presentation Logic and state Data Data provider

The bloc layer is in
charge of handlin the

logic and state
managment.

The repository is a layer
that abstract external

services of the
application. In this case

could be an api.

The network package is
in charge of dealing

with all comunication
with the api. Provides
the necessary data the

app will use.

UI BloC Repository Network

The software architecture we used is a combination of
all the best practices we have acquired and worked
with during our Flutter journey. We always focus on
implementing clean architecture methodologies
and continue learning and improving it.

As a result, this approach has a proven record with
our success cases that allows our clients’ businesses
to easily scale with no sweat and without
compromising quality.

We focused on defining the following structure on a
high level. It is simple enough yet really powerful
when scaling an app on Flutter.

F lutter architecture

Core

Shared widgets

Pages

local

database api

remote

Repository

models

widgets I10n

events

states response

request

BLOCfunctions

styles

colors

Presentation

thems

assets

view

Repository

Logic and State

F lutter Architecture in depth:

Demystifying our architecture

BLoC (Business Logic Component) allows us to
manage the state within the application. In this
way, all the things that change within the screens can
be handled from one component, rather than through
the app in various locations.

It has provided the team the confidence to scale a
production-ready challenging application. Its
short-term bureaucracy a.k.a “boilerplate” has highly
contributed to long-term efficiency. Using the BLoC
pattern also enables our team to accomplish reactive
programming without the complexity of managing
traditional reactive libraries like rxdart.

We have studied and experimented with different
solutions such as an inherited widget, provider, GetX,
Riverpod, MobX, and have decided to choose BLoC
because of its efficiency with scalable projects.

UI

BLOC

The bloc pattern

states events

UI state = ƒ()

State management:
The BLoC Pattern

We always define with clarity all the
responsibilities from the beginning of the
project. This way developers can easily
navigate throughout the project structure and
correctly follow the architecture.

Every library, package, component, and widget
has its corresponding place. By increasing the
level of abstraction on how we code we can
tackle the hardest problems and at the same
time we are able to find patterns that make
solutions simpler.

packages

We define a package for each repository that is
necessary. For instance we could have an api repository
that communicates with an external api, third-party
services that we use across the app, like persistence,
notifications or a UI repository where we have files
related to strings, font weights, colors, themes and assets.

Inside lib we typically define a folder for each feature. We
follow a feature-driven approach. Also we can have helper
functions that we use across the app and
internationalization to support languages. Finally we can
have a widgets folder where we keep purely UI components.

tools

Here we define all necessary scripts related to tools that
we use, so developers can easily access. For instance,
testing, automation, coverage, code generation.

Integration testing.

Our folders ’ structure and modules

github/workflows

CI/CD scripts for automation.

l ib

test

Unit & widget testing. Here we define a folder for each
future that we defined in lib folder.

test_driver

Feature-driven development

view

Here we put the screen of the feature with the
necessary widgets. This folder is responsible to
implement the screen (UI) that users are going to
interact with. It can make use of several widgets and it
will be a function of the state that will continuously
listen for changes and re-render itself.

bloc

This is where we handle the current state of the App.
The view communicates with the bloc dispatching events
and listening to changes in the state. The bloc will be in
charge of processing those events and recreating the
state based on the old state. Typically it will
communicate with a repository to exchange information.

models

Here you can find abstractions that define entities of the
real world or entities that will help complete a feature in
an easier way. By defining classes we can program with
a higher level of abstraction.

In our experience, organizing a project using a
feature-driven approach achieves better results than
using a layered approach. One major advantage is
that developers can focus on a single feature
without it affecting other features and potentially
reduce merging conflicts. This happens because the
feature is more isolated.

Testing is at the core of our process. We focus on correctly evaluating the app
to assure high quality. This way we can prevent undesired bugs and
provide the perfect user experience.

We carry out different kinds of testing, such as:

- Unit testing

- Widget Testing

The beauty of Flutter also relies on the possibility of integrating everything
with this technology. That’s why we also perform Quality Assurance
processes with Flutter in order to improve efficiency and quality testing.

We have high-standard metrics in our QA process to achieve the highest
quality. One of our key metrics is code coverage: testing every line of code
our developers write.

We also use other tools such as Icov to know exactly what percentage of the
app has been tested. This allows us to clearly visualize in percentages whats
lines of code have been tested and the ones who still need another test. We
normally establish the threshold percentage we want to accomplish and then
define what scenarios must be prioritized based on the core interests of our
client's business.

- Integration Testing

- Golden testing

Test ing

Option 1 . F lutter + Firebase

Firebase is a great Backend-as-a-service (BaaS) that provides
hosted backend services such as a real-time database, cloud
storage, authentication, crash reporting, machine learning,
remote configuration, and hosting for your static files.

We especially use it for MVP and medium size apps because it
allows us to have a scalable database and cloud functions that
help the business times and needs.

Flutter + Firebase is a great combination to start a project. We
use all the services it provides, each one providing a specific use
for each client case. They are organized under the following
categories: “Build”, “Release & monitor “, “Analytics”, and
“Engage”.

Back-End

Serverless is a method of providing Back-End services without the
hassle of worrying about the underlying infrastructure. This way
we can focus more on writing business logic code rather than
maintaining the server.

We suggest using this option when you want more control over
all the business logic and needs of the app. The combination
Flutter + Serverless provides more flexibility and the possibility
for developers to focus on developing more features. As a result,
this modern technology saves time, effort as well as cost.

Even though when using a BaaS sometimes you have to deal with
some restrictions, when moving to Serverless it doesn't interfere
since you can define any business logic you prefer.

In addition, developers can write server- side code and deploy it
to the cloud in a quick and interactive way that increases their
efficiency. As a matter of fact, clients can also save cost because
they have the possibility of only paying for what they use,
meaning the total number of hours a particular function runs.

Our favorite stack is a combination of Node.js (typescript) and
Lambda functions, either G Cloud or AWS.

Opcion 2 . F lutter + Ser verless

Amazon

CloudFront

Amazon

API Gateway

AWS

Lambda Amazon

DynamoDB

Amazon S3

User

Node.js

Opcion 3 . Microser vices and Containers

Using a single microservice will implement some business logic and might
also expose an API so it can intercommunicate with all of the other
microservices. By having this as a separate service, we won’t have a big
monolith and the code will be much simpler and maintainable. Each
developer is able to select the best technology or programming language
that fits better and we can easily re-write a microservice when we think it’s
becoming obsolete.

We suggest using this option in big projects when the client already knows
the app counts or will count with a big number of users since day 1.

We choose to use a microservice architecture for many reasons

 Possibility to independently scale each servic
 Programming language heterogeneous
 Simple to maintai
 Highly reusabilit
 Reduced downtime through fault isolation

Even though our favorite stack is a combination of Node.js, Docker, and AWS,
each scenario will be different depending on the selected software
architecture. We feel very comfortable working with modern architecture like
microservices yet we know there is not a perfect architecture rather is an
architecture that fits a problem and teams must be prepared and know why
they are choosing the architecture.

Continuous Integration is the practice of merging all of the developers’ work to
a shared mainline often. This gives them the confidence to include new features
in the current codebase, knowing it will be fully tested.

Github Actions is our best option for CI since we already use GitHub for SCM.
This way we can have instant feedback on each Pull Request.

In addition, Continuous Deployment allows us to ship versions of the app
more often. In order to not carry out repetitive tasks and risk skipping a step, we
set up a CI/CD from day one so we can automate these tasks.

Codemagic is a great option for CD since it focuses on mobile apps and has
great support for Flutter. It allows us to continuously deliver the latest version of
the applications to our clients

We also integrate other tools into our workflows such as Slack, Jira, Firebase
App Distribution, Fastlane, TestFlight, Google Play Console, and App Store
Connect. Through automating all this work, we can get notifications, send emails
with new builds, update Jira columns, and focus on continually developing new
features.

Continuous integration &
Continuous Deployment	

CI/CD example diagram

CODE BUILD TEST RELEASE DISPLAY

Continuous Integration Continuous Delivery

 Multiple Librarie

 Multiple Reported Issues

 Owner of unique Meetup Flutter Uruguay Group that belongs to Flutter Meetup Pro Network

 Multiple Stack Overflow answers.

 Our own Tech Blog with the latest Flutter News

 Somnio Academy (Coming soon! Flutter and programming academy on Uruguay).

Community

This open-source project consists of rapidly creating
and spinning up a Flutter Web Back Office with
Firebase integration. Out of the box and very quickly
you will be able to set up an admin dashboard
panel with authentication, CI/CD, and data
visualization with tables and charts.

Some highlights of the project

 CI/CD with GitHub Action
 Firebase hostin
 Responsive design
 Role-based authentication
 Data visualization with tables and chart
 Advanced routing

Learn more about the project:
https://github.com/somnio-software/flutter-web-backoffice

Community : F lutter Web Back Office

Community : F lutter Firebase Star ter

This open-source project integrates almost all
Firebase services that a production-ready app will
need. We’ve decided to focus on documenting how
we work with all the services for a single project in
order to be able to reuse them inside of other
projects in the future. We’ve also decided to open
source the project so we can continue growing and
contributing to the community.

The main reason to do it is that we feel there wasn’t a
project completely focusing on this. We believe we can
share our knowledge and experience with
Firebase, which we use in a lot of our client’s projects,
to help everyone in the community.

Some highlights:

 Firebase features out of the bo
 Scalable project structur
 Flavor
 Custom desig
 Reusable services

https://github.com/somnio-software/flutter-firebase-starter
Learn more about the project:

Our Work: CrimeDoor

CrimeDoor is a crime database for the most notorious unsolved mysteries. The
app provides case information in several ways, such as podcasts, images, police
reports, recreated crime scenes through augmented reality, and so much more.

Some highl ights

 #4 in App Stor
 4.5 star rating in App Stor
 +100 thousand downloads

 Client from Hollywood, LA, Californi
 7 Somnio team member
 8 months of development

Technologies we used

We integrate Firebase with Algolia in order to have an engine
that handles fast searches. We also provide Cloud functions
to keep Algolia up to date with Firebase.

We use Flutter's Unity Widget to enable bidirectional
communication between Flutter and Unity so we can add
Augmented Reality features directly embedded into Flutter.

We use Firebase as a BaaS. Firebase also helped us integrate
a lot of services in order to measure and provide a better
experience in the app, such as push notifications, analytics,
crashlytics, dynamic links, testlab, among others.

We use in-app purchases to monetize the app and provide
different modalities for users to choose, such as single
purchases, subscription model (freemium), and pay up front.

 +100 restaurants using Jaac successfull
 Restaurants in the US, Germany, Dubai,

Egypt, Spain, and many mor
 Platform with heterogeneous technologies

 1 and a half years of developmen
 95% of users rate 5 star
 2 platforms: one Guest App and one

Staff App

Some highl ights

Jaac is the result of an innovative idea to revolutionize the restaurant industry. We
built a platform that improves customer service for restaurants and at the
same time helps them manage it better.

Technologies we usedOur Work: Jaac

Thank you :)

Schedule a and let’s talk about your project with Flutter! meeting

Get in touch with us:

This is just a quick overview of how we use .

Truth is, our everyday lives' sum up would be: eat, Flutter, sleep, and repeat this order.

Also truth: we love it.

Flutter

hello@somniosoftware.com

(+598) 98 168 142

https://somniosoftware.com/
https://github.com/somnio-software
https://twitter.com/somnio_software
https://www.linkedin.com/company/23739307/admin/
https://www.instagram.com/somnio_software/
https://www.facebook.com/Somnio-Software-101920285002535
https://calendly.com/mpastorini/30min?month=2021-07
https://mail.google.com/mail/u/0/?fs=1&tf=cm&source=mailto&to=hello@somniosoftware.com

